Skip to main content

Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC

Abstract

Background

Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells.

Methods

We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue.

Results

This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells.

Conclusions

pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.

Introduction

Detection of mutations of the epidermal growth factor receptor (EGFR) gene is critical for predicting the response to therapy with tyrosine kinase inhibitors (TKIs, e.g.: gefitinib and erlotinib) in patients with non-small-cell lung cancer (NSCLC) [1]. Practically all mutations are on exons 18 through 21 where they affect the ATP-binding cleft of EGFR [2]. In vitro studies have shown that EGFR mutants have constitutive TK activity and, therefore, a greater sensitivity to anti-EGFR inhibition. Two classes of mutation account for approximately 90% of EGFR mutations reported to date in lung adenocarcinoma [3]. The class I mutations are in-frame deletions in exon 19, which almost always include amino-acid residues leucine 747 to glutamic acid 749 (ΔLRE). The second mutation is a single-point mutation in exon 21, which substitutes an arginine for a leucine at codon 858 (L858R).

Thus far, the direct DNA sequencing method is the most common and conventional method used for the detection and identification of mutations in tumor cells. However, its sensitivity is suboptimal for clinical tumor samples. Mutant DNA needs to comprise ≥25% of the total DNA to be easily detected [4]. All new techniques claim to be more sensitive with the ability to detect mutations in samples containing ≤10% mutant alleles. Pyrosequencing is a non-electrophoretic real time sequencing technology with luminometric detection [5]. Not only can it detect mutations but it also permits a mutation to be characterized and to quantify the percentage of mutated alleles in a sample. We have previously shown that it is a robust method to characterize the KRAS codon 12 and 13 mutations in paraffin-embedded samples in daily practice [6].

Here we also show that pyrosequencing is a simple and sensitive method to detect the two most common mutations of the EGFR TK domain, and demonstrate its usefulness for detecting such mutations in clinical lung tumor samples, in a large prospective series.

Materials and methods

Cell lines

The human lung cancer cell lines NCI-H1650 and NCI-H1975 were obtained from the American Type Culture Collection (ATCC). Both cell lines were cultured in RPMI 1640 supplemented with 10% fetal bovine serum at 37°C in air containing 5% CO2. Peripheral Blood Lymphocytes (PBL) used as negative control were obtained from healthy volunteers.

Clinical samples

Between 1st January and 30 June 2010, 213 tumor samples were collected from consecutive patients with an advanced lung adenocarcinoma, DNA extracted and their EGFR mutation status determined for selection for anti EGFR treatments by clinicians. All analyses were conducted with full respect of patients' rights to confidentiality and according to procedures approved by the local authorities responsible for ethics in research. All samples were histologically analyzed by an experienced thoracic pathologist and classified according to the WHO classification of lung cancer. For each sample, the percent of tumor cells was determined.

DNA extraction

The DNAeasy kit (Qiagen) was used according to the manufacturer's instructions to extract genomic DNA from cells and from tumor tissues. A prolonged (48H) proteinase K digestion was used for paraffin-embedded tissues [6].

PCR amplification of exons 19 and 21 of the EGFR gene

PCR and sequencing primers were designed using the PSQ assay design (Biotage) and are described in table 1. 100 ng of tumor DNA was amplified using a nested PCR to amplify almost all samples independent of the type of tissue fixative or of the fixative conditions. The first PCR product was amplified at 58°C for 20 (exon 19) or 10 (exon 21) cycles. The second PCR procedure was carried out in a total volume of 50 μl containing 2 μl of the first PCR, 20 pmol of each primer, 1.5 mmol/l MgCl2 and 1.25 U of FastStart Taq DNA polymerase (Roche). PCR conditions consisted of initial denaturing at 95°C for 15 min, 45 cycles at 95°C for 20 s, 62°C (exon 19) or 61°C (exon 21) for 20 s, 72°C for 20 s and a final extension at 72°C for 10 min. The PCR products (10 μl) were analyzed by electrophoresis in a 3% agarose gel to confirm the successful amplification of the 180-bp or the 195-bp PCR product.

Table 1 Sequences of primers used for pyrosequencing analysis

Pyrosequencing analysis

40 μl of PCR product were bound to streptavidin Sepharose HP (GE Healthcare), purified, washed, denatured using a 0.2 mol/l NaOH solution, and washed again. Then 0.3 μmol/l pyrosequencing primer was annealed to the purified single-stranded PCR product and the pyrosequencing was performed on a PyroMark ID system (Qiagen) following the manufacturer's instructions. The nucleotide dispensation order was GTATCAGACATGAC for analysis of exon 19 and CTGCGTGTCA for analysis of exon 21.

Results

Pyrosequencing assay of exon 19 deletions

In order to test the pyrosequencing method for the analysis of exon 19 deletions, we used DNA from the NCI-H1650 cell line as positive control and DNA extracted from human peripheral blood lymphocytes (PBL) as wild-type control. We choose a particular pyrosequencing program with the oligonucleotide dispensation order (GTATCAGACATGAC) because it permits to distinguish wild type and mutated alleles (table 2) generating for each sample a specific pyrogram (Figure 1A and 1B and Figure 2). These pyrograms correspond to a mix of wild type and mutated alleles. We quantitatively evaluated the exon 19 deletion (c.2235-2249del; p.Glu746-Ala750del) by determining the ratio between the peak areas of the two adenines dispensed in positions 6 (A6) and 8 (A8). We tested the reproducibility of the technique by analyzing each DNA in 20 consecutive and independent runs. We found an A6/A8 ratio of 1.06 ± 0.04 for the wild type sample and 4.59 ± 0.33 for the sample with the deletion. The relative standard deviation (RSD) was respectively 3.9% and 7.2%. Thus, a sample could be considered as mutated if A6/A8 was superior to 1.2 (corresponding to [the mean + 3 standard deviations] of the wild type sample). To demonstrate the assay sensitivity, we also quantified the A6/A8 ratio in various mixtures (10/0, 9/1, 8/2, 7/3, 6/4, 5/5, 4/6, 3/7, 2/8, 1/9 and 0/10) of DNA from the NCI-H1650 cell line with DNA from peripheral blood lymphocytes (Figure 1C). Each mixture was analyzed 5 times in the same run and we found an A6/A8 ratio varying from 5.27 ± 0.38 (mixture 10/0) to 1.11 ± 0.05 (mixture 0/10). We determined that all the mixtures containing at least 20% of NCI-H1650 DNA have an A6/A8 ratio superior to 1.2 and could be considered as mutated.

Table 2 Sequencing of wild type and mutated alleles with a particular program of pyrosquencing
Figure 1
figure 1

Analysis of exon 19 deletions by pyrosequencing. The analysis was performed with PBL DNA (A) as wild-type control and with NCI-H1650 DNA (B) as deletion control. The deletion was quantified by determining the ratio between the A8 and A6 peak areas. (C) The sensitivity was characterized by measuring A8/A6 ratio in different mixtures of NCI-H1650 DNA and PBL DNA.

Figure 2
figure 2

Comparison of different pyrograms observed for exon 19 analyses in different tumor tissues. The exon 19 status were described as wild type or deleted (*: peak diminished in the deleted samples; : peak increased in the deleted samples).

Moreover, the pyrosequencing program that analyzed the deletions in exon 19 was designed to detect almost all types of deletion (figure 2). In comparison with the graph obtained with the wild type sample, the diminution of several peaks (marked *) and the emergence of new ones (marked ) were considered as specific of a deletion (table 2).

Pyrosequencing assay of L858R exon 21 point mutation

L858R-specific pyrosequencing was performed using the NCI-H1975 cell line and a percentage of T > G mutation was determined (Figure 3). The result obtained with 20 consecutive runs, was 46.2 ± 3% with good reproducibility (RSD = 6.4%). We also determined the repeatability and the sensitivity of this method with various mixtures (10/0, 9/1, 8/2, 7/3, 6/4, 5/5, 4/6, 3/7, 2/8, 1/9 and 0/10) of DNA from the NCI-H1975 cell line and DNA from peripheral blood lymphocytes (Figure 3C). We detected the percentage of T > G mutation with a linear variation (R2 = 0.99) from 39.6 ± 0.6% (mixture 10/0) to 7.7 ± 1.7% (mixture 4/6) and a relative standard deviation varying from 1.4 to 15.9%. We also determined a% of mutation for the mixtures 3/7 and 2/8 with a CV largely higher then 20%.

Figure 3
figure 3

Analysis of c.2573T > G; p.Leu858Arg exon 21 mutation by pyrosequencing. Examples of pyrosequencing profiles obtained with PBL (A) and NCI-H1975 (B) DNA.* represented the T > G mutation. (C) Sensitivity curve established with different mixtures of NCI-H1975 and PBL DNA.

EGFR mutation in tumor samples

We compared the results obtained previously by conventional BigDye Terminator sequencing [7] using the method described by Pao et al [8] and those obtained by pyrosequencing 58 of these tumor samples (Table 3). All mutated samples were confirmed twice, starting from independent polymerase chain reactions. We observed a very high concordance between the two methods (56/58 (96.6%) for exon 19 and 57/58 (98.3%) for exon 21 analysis). For 3 samples (3/58; 5%), results were discordant and mutations were detected only by pyrosequencing and not by Big Dye terminator sequencing, reflecting the lower sensitivity of the classical sequencing method. Indeed, the two samples with an exon 19 deletion have an A6/A8 ratio of 1.7 and 1.8 which correspond to less of 25% of mutated alleles (figure 1C). For the sample with a L858R mutation detected only by pyrosequencing, we found that only 22.5% of the DNA was mutated.

Table 3 Comparison of EGFR status (wild type (WT) or mutant (M)) of exon 19 and exon 21 determined by big dye sequencing or by pyrosequencing on 58 NSCLC tissues

We then determined the EGFR status of 213 patients with advanced or metastatic lung adenocarcinomas for selection of to anti EGFR therapies (table 4). Seven (3.3%) samples were inconclusive due to poor DNA quality with no DNA amplification. Of the 206 remaining samples, 18 EGFR mutations were detected (8 of exon 19 and 10 of exon 21) (18/206; 8.7%). Among these 206 specimens, 36 had less than 20% of tumor cells and only one with a mutation was detected (1/36; 2.8%). For the 170 specimens containing more than 20% of tumor cells, 17 with mutations were found (17/170; 10%).

Table 4 Prospective evaluation of the EGFR status of exons 19 and 21

Discussion

Pyrosequencing is sensitive and enables accurate detection of mutations. A previous study has described the capacity of this method to detect small insertions [9] but this study is the first to demonstrate the application of pyrosequencing to exon 19 deletions. Analysis of exon 21 by pyrosequencing had been succinctly described by Takano et al. [10, 11], but without any data about the specificity, the repeatability or the sensitivity.

We first investigated the characteristics of EGFR mutations in the lung cancer cell lines NCI-H1650 and NCI-H1975 and used them as positive controls for the deletion in exon19 and the point mutation in exon 21 respectively. Moreover we used the DNA of these cells mixed with DNA isolated from blood samples from healthy volunteers to evaluate the basic properties of our novel method. We didn't observe strict linearity because the two cell lines (NCI-H1650 and NCI-H1975) have respectively 4 and 2.8 EGFR gene copies [12] but we found good sensitivity.

In routine daily practice fixed paraffin-embedded specimens, most often of small size, are the only samples available for both diagnosis and molecular analyses. The DNA is frequently fragmented, which could hamper PCR amplification. However, the PCR conditions described in this study allowed analysis of 96.7% of the paraffin-embedded tissues whatever the type of fixative used or the duration of the fixation. When the samples could be amplified and analyzed, results were concordant (97.4%) with those obtained by conventional BigDye terminator sequencing. The difference in sensitivity between the two methods is illustrated by the 3 samples characterized as mutated only by pyrosequencing. The frequency of deletions in exon 19 and mutations in exon 21 among the NSCLC patients was almost consistent with the corresponding values reported in Caucasian populations [13]. These samples were also analyzed for KRAS mutations because (i) EGFR and KRAS mutations are mutually exclusive in NSCLC and (ii) emerging data suggest that KRAS mutations are negative predictors of benefit from both adjuvant chemotherapy and anti-EGFR-directed therapies [12, 14, 15]. We found 26.7% of the samples with a KRAS mutation (data not shown). This is also in accordance with the literature [14] and validated our cohort as being well representative. We found 8 exon 19 deletions and 10 exon 21 mutations. These results were in accordance with those described by Tanaka et al. [16]. They noticed that exon 19 deletions were significantly associated with a male gender. In our cohort, 15 of the 18 patients with EGFR mutations were female.

We observed a deficit in mutation detection when the samples were very poor in tumor cells whereas the others could be accurately analyzed. As only bronchial or trans-thoracic fine needle biopsies are usually available in the medical setting of patients with advanced stage NSCLC (around 90% of the samples analyzed here, with only 10% being surgical specimens), these results demonstrate the need for a pathologist's expertise to qualify the samples and perform microdissection if samples contain less than 20% of tumor cells. Indeed, Masago et al. [17] have demonstrated that results could be obtained from biopsy specimens only if the quantity of the specimen is sufficient to make a pathological diagnosis and if cancer cells were carefully selected. However, microdissection is very time-consuming and it is not always possible. Alternatively, methods such as peptide nucleic acid-locked nucleic acid PCR clamp [18, 19] or real-time PCR based on scorpion primers coupled with the Amplified Refractory Mutation System (ARMS) [20] have a sensitivity around 1% of cancer cells. However, they could be difficult to use in routine clinical assay because they require special equipments and expensive reagents.

Conclusions

The present pyrosequencing method is sufficiently sensitive and specific to enable the detection of the two major TKI-sensitive mutations in a large majority of the DNA extracted from paraffin-embedded clinical samples.

References

  1. Govindan R: INTERESTing biomarker to select IDEAL patients for epidermal growth factor receptor tyrosine kinase inhibitors: yes, for EGFR mutation analysis, others, I PASS. J Clin Oncol. 28: 713-715.

  2. Gazdar AF: Personalized medicine and inhibition of EGFR signaling in lung cancer. N Engl J Med. 2009, 361: 1018-1020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gazdar AF: Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009, 28 (Suppl 1): S24-31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pao W, Ladanyi M: Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin Cancer Res. 2007, 13: 4954-4955.

    Article  CAS  PubMed  Google Scholar 

  5. Ronaghi M, Uhlen M, Nyren P: A sequencing method based on real-time pyrophosphate. Science. 1998, 281: 363-365.

    Article  CAS  PubMed  Google Scholar 

  6. Dufort S, Richard MJ, de Fraipont F: Pyrosequencing method to detect KRAS mutation in formalin-fixed and paraffin-embedded tumor tissues. Anal Biochem. 2009, 391: 166-168.

    Article  CAS  PubMed  Google Scholar 

  7. Beau-Faller M, Degeorges A, Rolland E, Mounawar M, Antoine M, Poulot V, Mauguen A, Barbu V, Coulet F, Pretet JL, Bieche I, Blons H, Boyer JC, Buisine MP, de Fraipont F, Lizard S, Olschwang S, Saulnier P, Prunier-Mirebeau D, Richard N, Danel C, Brambilla E, Chouaid C, Zalcman G, Hainaut P, Michiels S, Cadranel J: Cross-Validation Study for Epidermal Growth Factor Receptor and KRAS Mutation Detection in 74 Blinded Non-small Cell Lung Carcinoma Samples: A Total of 5550 Exons Sequenced by 15 Molecular French Laboratories (Evaluation of the EGFR Mutation Status for the Administration of EGFR-TKIs in Non-Small Lung Carcinoma [ERMETIC] Project-Part 1). J Thorac Oncol. 2011.

    Google Scholar 

  8. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H: EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004, 101: 13306-13311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Guo DC, Qi Y, He R, Gupta P, Milewicz DM: High throughput detection of small genomic insertions or deletions by Pyrosequencing. Biotechnol Lett. 2003, 25: 1703-1707.

    Article  CAS  PubMed  Google Scholar 

  10. Fukui T, Ohe Y, Tsuta K, Furuta K, Sakamoto H, Takano T, Nokihara H, Yamamoto N, Sekine I, Kunitoh H, Asamura H, Tsuchida T, Kaneko M, Kusumoto M, Yamamoto S, Yoshida T, Tamura T: Prospective study of the accuracy of EGFR mutational analysis by high-resolution melting analysis in small samples obtained from patients with non-small cell lung cancer. Clin Cancer Res. 2008, 14: 4751-4757.

    Article  CAS  PubMed  Google Scholar 

  11. Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U, Yamamoto S, Nokihara H, Yamamoto N, Sekine I, Kunitoh H, Shibata T, Sakiyama T, Yoshida T, Tamura T: Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005, 23: 6829-6837.

    Article  CAS  PubMed  Google Scholar 

  12. Gandhi J, Zhang J, Xie Y, Soh J, Shigematsu H, Zhang W, Yamamoto H, Peyton M, Girard L, Lockwood WW, Lam WL, Varella-Garcia M, Minna JD, Gazdar AF: Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS One. 2009, 4: e4576-

    Article  PubMed Central  PubMed  Google Scholar 

  13. Pircher A, Ploner F, Popper H, Hilbe W: Rationale of a relaunch of gefitinib in Caucasian non-small cell lung cancer patients. Lung Cancer. 69: 265-271.

  14. Riely GJ, Marks J, Pao W: KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009, 6: 201-205.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts PJ, Stinchcombe TE, Der CJ, Socinski MA: Personalized Medicine in Non-Small-Cell Lung Cancer: Is KRAS a Useful Marker in Selecting Patients for Epidermal Growth Factor Receptor-Targeted Therapy?. J Clin Oncol. 2011.

    Google Scholar 

  16. Tanaka T, Matsuoka M, Sutani A, Gemma A, Maemondo M, Inoue A, Okinaga S, Nagashima M, Oizumi S, Uematsu K, Nagai Y, Moriyama G, Miyazawa H, Ikebuchi K, Morita S, Kobayashi K, Hagiwara K: Frequency of and variables associated with the EGFR mutation and its subtypes. Int J Cancer. 126: 651-655.

  17. Masago K, Fujita S, Mio T, Ichikawa M, Sakuma K, Kim YH, Hatachi Y, Fukuhara A, Kamiyama K, Sonobe M, Miyahara R, Date H, Mishima M: Accuracy of epidermal growth factor receptor gene mutation analysis by direct sequencing method based on small biopsy specimens from patients with non-small cell lung cancer: analysis of results in 19 patients. Int J Clin Oncol. 2008, 13: 442-446.

    Article  CAS  PubMed  Google Scholar 

  18. Nagai Y, Miyazawa H, Huqun , Tanaka T, Udagawa K, Kato M, Fukuyama S, Yokote A, Kobayashi K, Kanazawa M, Hagiwara K: Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res. 2005, 65: 7276-7282.

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka T, Nagai Y, Miyazawa H, Koyama N, Matsuoka S, Sutani A, Huqun , Udagawa K, Murayama Y, Nagata M, Shimizu Y, Ikebuchi K, Kanazawa M, Kobayashi K, Hagiwara K: Reliability of the peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based test for epidermal growth factor receptor mutations integrated into the clinical practice for non-small cell lung cancers. Cancer Sci. 2007, 98: 246-252.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K: Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res. 2006, 12: 3915-3921.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and funding

Excellent technical support was provided by Emilie Bonin, Monique Delon, Valérie Konik-Mathevet, Maryse Samuel and Odile Vermeulen. We also acknowledge the Department of Cytology and Pathology for tumor sample preparations. We thank Dr Alison Foote for correcting our English usage. This project was supported by the clinical research direction of the Grenoble's hospital, INCa (the French National Cancer Institute) and the French ministry of health initiated the ERMETIC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence de Fraipont.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

SD carried out the molecular analysis, MJR participated in the design of the study and drafted the manuscript, SL carried out immunohistochemestry analysis, FdeF designed the study, carried out the molecular analysis and drafted the manuscript. All authors reviewed the draft manuscript, read and approved the final version for submission.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Authors’ original file for figure 3

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Dufort, S., Richard, MJ., Lantuejoul, S. et al. Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC. J Exp Clin Cancer Res 30, 57 (2011). https://doi.org/10.1186/1756-9966-30-57

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1756-9966-30-57

Keywords