Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from Journal of Experimental & Clinical Cancer Research and BioMed Central.

Open Access Highly Accessed Research

Targeting 3-phosphoinositide-dependent protein kinase 1 by N-acetyl-cysteine through activation of peroxisome proliferators activated receptor alpha in human lung cancer cells, the role of p53 and p65

Swei Sunny Hann*, Fang Zheng and Shunyu Zhao

Author Affiliations

Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangdong Academy of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Room 421, 4th Floor, Scientific Research Building, Neihuan West Road No. 55, University City, Panyu District, Guangzhou, Guangdong Province 510120, P.R. China

For all author emails, please log on.

Journal of Experimental & Clinical Cancer Research 2013, 32:43  doi:10.1186/1756-9966-32-43

Published: 18 July 2013

Abstract

Background

N-Acetyl-Cysteine (NAC), a natural sulfur-containing amino acid derivative, and peroxisome proliferators activated receptor alpha (PPARα) ligand have been shown to have anticancer properties. However, the mechanisms by which these agents inhibit human non-small cell lung carcinoma (NSCLC) cell growth have not been well elucidated.

Methods

Small interfering RNAs (siRNAs) were used to knockdown 3-phosphoinositide-dependent protein kinase 1 (PDK1), PPARα, p65 and p53 genes; Western Blot was performed to detect the protein expression of PDK1, PPARα, p65 and p53; Cell viability and MTT assays were carried out to determine the cell proliferation; Transient transfection and Dual-Luciferase Reporter assays were used to transfect siRNAs or exogenous expression vectors, and to measure the gene promoter activity.

Results

We showed that NAC inhibited NSCLC cell proliferation through reduction of PDK1 expression. NAC also induced the protein expression of PPARα. While PPARα ligand enhanced, PPARα antagonist and siRNA abrogated the effect of NAC on PDK1 promoter activity, protein expression and cell growth. Overexpression of PDK1 diminished the inhibitory effect of NAC on cell proliferation. NAC induced p53 and reduced p65 protein expression through activation of PPARα. Silencing of p53 and overexpression of p65 blocked the effect of NAC on PDK1 promoter activity and protein expression.

Conclusion

Our results show that NAC inhibits PDK1 expression through PPARα-mediated induction of p53 and inhibition of p65 protein expression. PPARα ligand enhances the effect of NAC. This ultimately inhibits NSCLC cell growth. This study unveils a novel mechanism by which NAC in combination with PPARα ligand inhibits growth of human lung carcinoma cells.

Keywords:
3-phosphoinositide-dependent protein kinase 1; N-Acetyl-Cysteine; Peroxisome proliferators activated receptor alpha; Human non-small cell lung carcinoma cells; Nuclear factor-kappa B; p53