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Abstract
Background: Endostatin and anastellin, fragments of collagen type XVIII and fibronectin,
respectively, belong to a family of endogenous inhibitors of angiogenesis which inhibit tumor
growth and metastasis in a number of mouse models of human cancer. The mechanism of action
of these inhibitors is not well understood, but they have great potential usefulness as non-toxic
long-term therapy for cancer treatment.

Methods: In this study, we compare the anti-angiogenic properties of endostatin and anastellin
using cell proliferation and transwell migration assays.

Results: Anastellin but not endostatin completely inhibited human dermal microvessel endothelial
cell proliferation in response to serum stimulation. Both anastellin and endostatin additively
inhibited endothelial cell migration in response to VEGF. Anastellin but not endostatin lowered
basal levels of active ERK.

Conclusion: These data indicate that anastellin and endostatin exert their anti-angiogenic effects
by modulating distinct steps in the angiogenic pathway and suggest that matrix-derived inhibitors
of angiogenesis may exhibit higher efficacy when used in combination.

Background
Angiogenesis, the development of new blood vessels from
pre-existing vessels, has been pushed toward the front of
cancer research because of its potential therapeutic appli-
cations. The angiogenic potential of endothelial cells is
determined by a complex balance of positive and negative
regulators of growth, migration, invasion and tubulogen-
esis. Among these regulators are growth factors, such as
VEGF, integrin adhesion receptors and extracellular
matrix molecules [1,2]. Peptides derived from the extra-
cellular matrix of the tumor microenvironment have been

reported to regulate tumor progression and angiogenesis
in a variety of mouse models of human cancer and have
the potential for developing into promising anti-neoplas-
tic therapies targeting the angiogenic process [3]. Endosta-
tin, a 20 kD terminal fragment of collagen XVIII, is
believed to be generated locally in the tumor environment
through the action of proteases [4]. Endostatin has exhib-
ited anti-angiogenic properties and anti-tumor activity in
a wide variety of human and murine primary and meta-
static tumors growing in mice (reviewed in [5]). Although
the exact mechanism is unknown, endostatin has been
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shown to inhibit proliferation and induce apoptosis in
some endothelial cell lines [6-9]. Microarray studies have
shown that endostatin can regulate up to 12% of all
human genes in microvessel cells. Many of these genes are
known regulators of angiogenesis [10]. These studies indi-
cate that the effects of anastellin are not linked to one par-
ticular signaling pathway, but rather that endostatin
impacts a broad network of potentially intersecting path-
ways important in the angiogenic phenotype. Several
receptors have been implicated in mediating the effects of
endostatin. These include α5β1 integrins, selectins or cell
surface heparan sulfate proteoglycans [11-15].

Anastellin, a 10 kD fragment derived from the first type III
repeat of fibronectin (III1c), is another anti-angiogenic
peptide that inhibits tumor growth and metastasis in vivo
[16]. The anti-tumor activity of anastellin has been pro-
posed to result from inhibitory effects on angiogenesis as
tumors in anastellin-treated mice exhibit reduced blood
vessel density [17]. In vitro, studies using human micro-
vessel endothelial cells show that anastellin inhibits
serum dependent cell growth by blocking progression of
the cell cycle [18]. The mechanism of action of anastellin
is not well understood. It has been reported to bind to
α5β1 integrins and proteoglycans [19] and shown to
affect the activity of several intracellular signaling mole-
cules [18-21]. Anastellin also binds fibronectin and pro-
motes changes in the organization and assembly of the
fibronectin matrix [20,21].

To date, there are no studies which directly compare the
effects of these inhibitors on endothelial cell function. We
have used human microvessel endothelial cells to com-
pare the effects of anastellin and endostatin on serum-
dependent growth and VEGF-dependent cell migration.
We find that endostatin and anastellin exhibit distinct
effects on microvessel cell proliferation and migration
which are likely mediated through differing effects on
MAP-Kinase pathways.

Methods
Reagents
Unless otherwise indicated, chemical reagents were
obtained from Sigma Chemical Co. (St Louis, MO).
Recombinant anastellin (III1C) was expressed and purified
as previously described [21]. Recombinant human
endostatin prepared in yeast (Pichia pastoris) was from
Molecular Probes (Eugene, OR). Yeast preparations of
recombinant human endostatin have been shown to
inhibit in vitro angiogenesis and tumor growth [22-24].
Monoclonal antibodies to phospho-ERK (E10) and rabbit
polyclonal antibodies to p38 and phospho-p38 (Thr-180/
Tyr-182) were obtained from Cell Signaling Tech (Beverly,
MA). Rabbit polyclonal antibodies to ERK2 were obtained
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Anti-CD146 monoclonal antibody (clone P1H12) was
obtained from Chemicon International Inc. (Temecula,
CA). Vitrogen-100 was from Cohesion Technologies (Palo
Alto, CA).

Cell culture
Primary adult human dermal microvessel endothelial
cells were obtained from VEC Technologies Inc (Rensse-
laer, NY). Cells were maintained in complete medium
[MCDB-131 supplemented with 20% defined fetal bovine
serum (D-FBS; HyClone Labs, Logan, UT), 2 mM
Glutamax (Gibco), EGM-2MV SingleQuots growth factor
cocktail (Cambrex Corp, East Rutherford, NJ), and 10 μg/
ml heparin] and cultured on collagen-coated (20 μg/ml
Vitrogen-100) tissue culture dishes.

Cell proliferation assay
Endothelial cells were seeded (500 cells/well) in complete
medium (without heparin) onto collagen-coated 24-well
plates and allowed to settle for 4 hours. Endostatin and
anastellin were added to seeded cells and cells were grown
at 37°C in 5% CO2 for up to 6 days. At time points, plates
were fixed in 3% paraformaldehyde and stored in PBS at
4°C. Endothelial cells were quantified indirectly by ELISA
using a mouse anti-endothelial cells (CD146) mono-
clonal antibody (clone P1H12) as previously described
[18].

Transwell migration assay
Transwell polycarbonate plates with 6.5 mm diameter tis-
sue culture inserts containing a membrane with 8 μm
pores were coated with 20 μg/ml of Vitrogen-100 over-
night at 37°C in an atmosphere of 5% CO2. Following
incubation, inserts were washed once with PBS and
blocked with 1% BSA/PBS for 1 hour at 37°C. washed and
allowed to dry. Cells were suspended in serum free
MCDB-131 and seeded (5 × 104 cells/well) into each
insert in the presence of endostatin and/or anastellin. In
each outer well, 600 μl of medium with a peptide concen-
tration matching its inner well was added. The plates are
then assembled and incubated for 1 hour at 37°C and 10
ng/ml of vascular endothelial growth factor (VEGF) was
added to each of the outer wells. After a 4-hour incuba-
tion, the plates were rinsed once in PBS, fixed in 3% for-
maldehyde/PBS for 15 minutes, and rinsed with 0.5%
crystal violet. Cells adhering to the top surface of the tissue
culture inserts were removed with a cotton tip applicator
while cells adhering to the bottom surface of the inserts
were rinsed and permeability with 1% Triton-X 100 in
PBS for 20 minutes. Subsequently, cells were stained with
Hoechst 33258 (1 μg/ml in PBS) for 30 minutes in the
dark and then viewed under the fluorescent microscope
and the number of cells in 3 random 10× magnification
fields was determined.
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Results
Effects of anastellin and endostatin on endothelial cell 
proliferation
Experiments were designed to compare the effect of anas-
tellin and endostatin on microvessel endothelial cell
growth. Endothelial cells were seeded in complete
medium (20% serum and growth factor cocktail) into col-
lagen-coated wells. Figure 1 shows that the addition of
anastellin inhibited serum/growth factor dependent
growth in a dose-dependent manner. The inhibitory
effects of anastellin on growth were quantified 3 days after
seeding (day 4) and again at 5 days after seeding (day 6)
(Figure 1). In contrast, endostatin treatment had no effect
on microvessel cells which continued to grow at the same
rate as control cells. Anastellin treatment did not result in
a loss of cells due to disruption of adhesion as cells ini-
tially seeded remained attached and spread during the
entire 5-day assay (data not shown). These data indicate
that in the presence of a complex medium of growth fac-
tors, anastellin but not endostatin is a very effective inhib-
itor of endothelial microvessel cell growth.

Effect of anastellin and endostatin on endothelial cell 
migration
To evaluate the effects anastellin and endostatin on
endothelial cell motility, microvessel cells were seeded
onto collagen-coated filters in modified Boyden cham-
bers. As shown in Figure 2, the addition of VEGF to the
bottom chamber as a chemoattractant resulted in a two-
fold increase in the number of cells migrating to the bot-
tom of the filter. Addition of anastellin caused a dose-
dependent decrease in VEGF-stimulated cell migration.
Complete inhibition of VEGF-stimulated migration was
seen at 10 μM anastellin. Endostatin also inhibited VEGF-
induced migration, but the effects were only partial.
Endostatin inhibited VEGF-induced migration by 40–
50% over the dose range tested. This result is consistent
with previous studies where endostatin was shown to
inhibit VEGF stimulated migration by 60–70% [25,26].

Experiments were done to address whether the effects of
anastellin and endostatin on cell migration were additive.
Based on the results shown in Figure 2, doses of each pep-
tide were selected which would give partial inhibition of
migration. As shown in Figure 3, 0.04 μM endostatin
inhibited migration by approximately 35%, 2.5 μM anas-
tellin inhibited migration by approximately 60%. When
added together, there was greater than a 95% inhibition of
migration. These data indicate that the effect of these
inhibitors on migration are additive and suggest that they
exert independent effects on cell migration.

Effect of endostatin and/or anastellin on basal levels of 
MAP kinase activity
As ERK and p38 MAP kinase have been reported to regu-
late growth and migration of endothelial cells in response
to growth factors including VEGF [27-29], we compared
anastellin and endostatin for their effects on the basal
activities of these MAP kinases in microvessel cells. Cells
were incubated with either anastellin or endostatin for 1
hour. The doses used were those shown to inhibit either
proliferation (Figure 1) or migration (Figure 2). Following
treatment, cell lysates were analyzed for active ERK
(pERK) or p38 MAP kinase (p-p38) by Western blot. Fig-
ure 4A shows that increasing doses of anastellin caused a
marked increase in the activation of p38 and a nearly
complete loss of active ERK. The effects of anastellin on
the MAP kinase activities were dose-dependent between
5–20 μM and correlated well with the amounts of anastel-
lin required to inhibit cell proliferation and migration
(Figures 1 and 2). In contrast, endostatin had no effect on
the levels of active p38 or ERK when used at doses shown
to cause an inhibition of migration (Figure 2). Figure 4B
shows that the effects of anastellin on MAP kinase activity
occurred within minutes. Maximal activation of p38 was
seen between 30–40 minutes, while inhibition of ERK was
seen by 10 minutes. Consistent with the results shown in
Figure 4A, endostatin and anastellin exert differential
effects on the activity of ERK and p38 MAP kinases and
suggest that these peptides inhibit angiogenesis by modu-
lating distinct signaling pathways in microvessels cells.

Discussion
The present study shows that anastellin, but not endosta-
tin, is an effective inhibitor of microvessel cell growth in
response to growth factor supplemented serum. These
findings differ from earlier studies showing that endosta-
tin could inhibit bFGF- or VEGF-stimulated endothelial
cell growth [6,28,30-33] or in vivo angiogenesis in
response to VEGF [34]. The discrepancy between these
earlier results and the current data may be due to differ-
ences in the assay system (serum-dependent growth) or in
the cell type (human microvessel endothelial cells). In
agreement with this, other studies have shown that the
effects of endostatin on endothelial cells can be quite var-
ied depending on the endothelial cell source [35].
Although microarray studies have shown that endostatin
targets a large number of genes [36], our studies suggest
that anastellin effects a broader base of targets to include
those important in proliferation of endothelial cells.
Taken together, these data suggest that endostatin may
selectively inhibit signaling through individual growth
factor receptors but it may be less effective in inhibiting
growth in response to a more complex mixture of growth
stimulatory signals. Anastellin and endostatin have both
been reported to bind to α5β1 and heparan sulfate prote-
oglycans [12,19,37]. This would suggest that these two
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peptides might exert similar effects on cell behavior. How-
ever, in this study we have found that these two peptides
exhibit distinct effects on both cell behavior and MAP
kinase pathways. Consistent with this observation, we
have found more recently that the effects of anastellin on
p38 are independent of β1 integrins [38].

The effects of anastellin and endostatin on cell migration
indicate that combined regimens of matrix-derived pep-
tides and provide additive levels of inhibition. Other ang-
iogenesis inhibitors derived from matrix molecules
regulate effects on endothelial cells through a variety of
mechanisms. Tumstatin, a fragment of Type IV collagen,
inhibits endothelial cell proliferation and induces apop-
tosis through the mTOR pathway but has no effect on cell
migration [39]. Canstatin, another fragment of the Type

IV collagen, has also been shown to inhibit serum-
dependent cell proliferation and induce apoptosis. Unlike
anastellin, canstatin's inhibition of cell proliferation was
not associated with changes in ERK activity but were
dependent upon apoptotic signaling events transduced
through membrane death receptors [40,41]. In contrast to
other Type IV collagen fragments, arrestin which is
derived from the α1 chain of type IV collagen does not
induce apoptosis but inhibits endothelial cell prolifera-
tion and migration and their associated signaling path-
ways including ERK1/2, FAK, and p38 MAPK [42]. As each
of these matrix-derived peptides activate distinct anti-ang-
iogenic pathways, it is probable that combinations of
matrix-derived peptides would result in synergistic inhibi-
tion of not only cell migration but also of neovasculariza-
tion in general [43,44]. In addition, these peptides may
augment the anti-tumor effects of more traditional chem-
otherapeutic agents or oncolytic viruses [45-49].

The basis for endostatin's or anastellin's inhibitory effects
on tumor growth and metastasis in vivo may extend
beyond direct effects on the tumor vasculature to more
widespread effects on the tumor microenvironment.
Endostatin has been shown to exhibit direct effects on
tumors. Endostatin treated mice undergoing carcinogen-
induced skin tumors exhibit less aggressive more differen-
tiated tumors, suggesting that endostatin regulates termi-
nal differentiation of keratinocytes [50]. When given in
combination with angiostatin during the early states of
prostate cancer in the TRAMP mouse, endostatin arrested
the progression of moderately differentiated carcinoma to
poorly differentiated carcinoma [51]. Anastellin has also
been shown to activate signaling pathways in dermal
fibroblasts, suggesting that anastellin may elicit biologic
effects on stromal cells present within the tumor [20,21].
The extravascular effects of matrix-derived inhibitors of
angiogenesis within the tumor microenvironment repre-
sent an important area of future investigation.

Conclusion
Our data indicate that the matrix-derived inhibitors of
angiogenesis, endostatin and anastellin, exhibit effects on
endothelial microvessel cell proliferation and migration
which are associated with differing effects of MAP kinase
activity. These findings suggest that combinatorial anti-
angiogenic therapies may provide novel treatments for the
management of cancer as a chronic disease.
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Effects of anastellin and endostatin on endothelial cell prolif-erationFigure 1
Effects of anastellin and endostatin on endothelial 
cell proliferation. Microvessel cells were seeded (500 cells/
well) in the presence of complete medium (day 1). After 4 
hours, anastellin or endostatin was added to the medium. At 
day 4 and ay 6, the number of cells was determined by ELISA. 
Control wells (C) received no peptide. All wells were nor-
malized to the 6-day control which was set at 1. Error bars 
represent standard error of the mean of triplicate samples.
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Effects of anastellin and endostatin on VEGF-dependent endothelial cell migrationFigure 2
Effects of anastellin and endostatin on VEGF-dependent endothelial cell migration. Endothelial cells were seeded 
on collagen-coated transwell tissue culture inserts in the presence of either anastellin or endostatin, which was added to both 
upper and lower chambers. Control wells (C or 0) received no peptide. Positive control wells (0) were set at 1 and represent 
VEGF migration. After 1 hour, the 10 ng/ml VEGF was added to the lower chamber as chemoattractant. After 4 hours, the 
plates were fixed, stained and cells in three 10× fields counted in each of 3 membranes. The bars represent standard error of 
the mean from 3 separate experiments (n = 27).
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The effects of anastellin and endostatin on endothelial cell migration are additiveFigure 3
The effects of anastellin and endostatin on endothelial cell migration are additive. Endothelial cells were seeded on 
collagen-coated transwells in the presence of endostatin or anastellin either individually or in combination. Peptides were 
added to both chambers at the time of seeding. After 1 hour, 10 ng/ml VEGF was added to the lower chamber. Control wells 
(C) received no peptides and no VEGF and represent baseline migration. Positive control wells (+) were set at 1 and represent 
VEGF dependent migration. After 4 hours, plates were fixed, stained and the number of cells migrating to the underside of the 
filter were counted in three 10× fields in each of triplicate wells. Bars represent standard error of the mean from data obtained 
from 7 separate experiments, n = 63.
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